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The Use of Several Numerical Methods in
Scientific Calculators



Abstract

Al scientific caleulators employ numerical methods in the execution of some
operations, from the more basic to the most advanced, and yet most people
are unaware of what goes on inside of the calculator to arrive at the result.
It is commonly assumed that the calculator will definitely be able to arrive
at the correct result. This essay seeks to establish which numerical meth-
ods are employed in the execution of some of the calculators’ most
frequently used operations, and analyse how long these methods take to
work and whether they give correct results. The operations considered in-
chudes how the calculator calculates the values of trigonometric, exponential
and logarithmic functions, how it solves equations, and how it does numer-
ical integration. These operations correspond to those found on a scientific
graphing calculator, the Ti-84 Plus. For cach of these operations, several
of the more commonly used methods arc detailed and explained why they
work fast and accurately. The method used in this particular calculator is
also considered. All the methods are then compared against each other by
applying them on a particular problem. The findings show that the Ti-84
Plas uses methods, CORDIC for the calculation of trigonometric, exponen-
tial and logarithmic functions, a combination of bisection and secant method
for the solution of equations, and Gauss-Kronrod guadrature for numerical
integration, that give correct results in a reasonably fast time. Therefore, it
can be concluded that calenlators do use methods that give accurate results,
justifying peoples trust in calculators.
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Chapt er 1

Introduction

More than a few decades ago, people had no calculators or computers to help
them to do their caleulations. They had to do their caleulations on paper,
often relying on ingenious tricks to simplify their calculations. Within the
last century, students relied on tables of values to do their caleulations on
logarithms and trigonormetrical functions.

Calculators nowadays are capable of executing hundreds of different func-
tions. How can we be sure what goes on iuside the caleulator fo come up
with the result? This essay will examine the methods that are in use in
the calculations of some of the more commonly used functions as
well as examine the reliability, accuracy and speed of the results given by the
calculator. The three operations that will be covered are: firstly, calculating
the values of trigonometric, exponential and logarithmic function, secondly,
finding the roots of equations, and lastly, doing numerical integration. The
methods emploved in the calculator model Ti-84 Plus will be compared
with the other methods to understand why it was chosen. In this essay, 1
have chosen to focus on the Ti-84 Plus because I use this calculator in my
Higher and Further Mathematics clasgs.

I will explain the difference between a numerical method and an analytical
method by means of an example. To find the roots of the quadratic equation
r? — 2 =0, we can factorise the equation into (3: + \/E) (:r — \/2_) = {}, from
which the solutions are /2. These are known as the analytical answers
obtained through an analytical method. On the other hand, if we had solved
the problem using the CALC function in the Ti-84 Plus, we would have
obtained either the value of & = —1.4142136 or x = 1.4142136. The fact that
the value of v/2 was approximated to 1.4142136 distinguishes these values as
pumerical answers. However, the main reason why these are numcrical an-
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swers s because they were obtained using a numerical method, which deals
with numerical values throughout its process, as opposed to exact values.
The caleulator does not usce analytical methods because the calculator can-
not handle the analytical answers most of the tune. Iu addition, sometimes
an apgwer cannot he obtained in terms of an analvtical answer but is only
available as a numerical angwer. An example of this would be the solutions
of a polynomial of degree 5 or higher. Therefore, in this essay, I will be
considering numerical methods, which can be applied in all general cases.



Chapter 2

Background information on the
calculator

[ will start with describing the main feature of most calculators that explain
why numerical methods are used. There will be a focus on the Ti-84 Plus
and in this chapter, all reference to a caleulator will apply to the Ti-84 Plus,
although most other calculators share similar featurces.

Most caleulators deal with so-called floating-point arithmetic. This refers
to the case where results are only calculated to a certain number of signifi-
cant figures, depending on the calculator. For example, on the Ti-84 Plus,
all tesults are caleulated to 14 significant figures.  Any value less signifi-
cant than the 140 significant figure is essentially discarded. For example,
1 +10~% = 1.000000000000001. However, on the Ti-84 Plus, 1 +107® = 1.
This is becanse:

1 = 1.000000000000C |
+ 107¥ = 0.0000000000000 | 01

= 1.0000000000000 |

The symbol | represents the border where the values to its left are within 14
significant figures and the values to its right are cutside and are thercfore
digcarded.

Therc are two implications of this feature. Firstly, some information is simply
lost. The caleulator can only and need only caleulate the first 14 significant
figures. Sccondly, if a method involves many iterations on the same nurber,
the error, which is the difference between the actual and calculated answer,
could quickly multiply. This is the reason why most caleulators display the
values to less significant figures than they are capable of calenlating in. The
last few digits, known as ”guard digits”, might not contain accurate values.



TFor simplicity, we will nof discuss the methods emploved in the numerical
caleulations listed below, and we will stmply assume these calculations to be
aceurate.

Where v and § are both real numbers:
o + 3 (addition)

. — 3 (subtraction)

v * 3 (romltiplication)

o+ &, 5 %0 (division)

By extension of the above, these can he calculated too.
Where o is an integer and [J is any real number:

0%
o

G =G fxfx. .. %00 (power)
ol =a*{o—1)% (o —2) % (a—3) = ... x2x 1 (factorial)

é



Chapter 3

Trigonometric, exponential and
logarithmic functions

The functions mentioned in the title all have properties that allow the dormain
of the function to be reduced. The trigonometric functions are periodic with
period 2w, and the exponential and logarithmic functions have properties
fla+ )= flayx f(83) and f(af) = f{a) + f(J) respectively. Such proper-
ties allow numerical methods to essentially limit the domain on which they
need ta operate. For example for trigonomefric functions, cur methods need
only produce values for inputs between {§ and §. For an exponential function,
the rule €% = ¢% x "% allows us to restrict the domain to [0,1], and for
logarithmic functions, the rule In(123456789) = In(1.8396495) + 26 = In(2)
allows a reduction to valucs between 1 and 2.

Below, we will consider, for trigonometric and exponential functions, a num-
ber of numerical methods aimed at obtalning their vaiues.



3.1 Trigonometry Table

A trigonometry table 13 a table that contains the values of a particular
trigonometric function over a certain range. Before calculators were created,
this was the main method people used to calculate trigonometric functions.
There are also exponential tables and logarithm tables for the respective
functions. An example of a trigonomeiry table is shown below.
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Figure 3.1: Aun example of a frigonometry table

Using the above table, one can find the values to 4 decimal places for any



integer input. There are two disadvantages in using such a table. The first
one is that there are no values for non-integer inputs and the second one 18
that the values are only accurate to 4 decimal places.

Both problems can he solved by including more values and storing more
decimal places for cach of the values. The problem with this is that the in-
put of more data would require a larger table, and this would take up more
space on the calculator’s memory. This problem with increasing the table
illustrates the tradeoff between the sive of the table and its accuracy. ¥or a
portable caleulator, the size of the memory is a very important factor in the
cost of a calculator.

For the first problem, another possible solution is to interpolate the value.
This allows for the finding of values for non-integer input values and is more
accurate than by merely choosing the value in the table which the input value
is nearer to. Linear interpolation requires only a very simple calculation and
can still get accurate vesults. Linear interpolation can be done by using the
following formula:

Flan+AR) = F(Z)+ Db (f(Tar) — flzn)) = Dbk f(tnp) ) +{1— Dh)x f2n)
For example,
§in(12.3%) = 0.3 % sin(13°) + (1 — 0.3) % sin(12°) = 0.21303

This value tallics with the answer obtained by a direct calculation on the
Ti-84 Plus.

The main advantage of this method is that the calculator needs only to look
for the input value in the table and possibly do a simple interpolation to
come up with the output. This is the fastest of all the other methods which
all require more caleulations. The main disadvantage is that cach entry in
the tahle takes up space in the calculator’s memory. Since there are other
methods that are more accurate without taking up any significant amount of
time, this method is not used in a calculator, which essentially explains why
caleulators do not store and employ tables.



3.2 Taylor Series

Some functions can be expressed as a polynomial with an infinite number of
terms. These polvnomials are known as a Taylor Series. These are soine of the
Taylor series for the trigonometrical, exponential and logarithmic functions.

N T R A A A
S =Tt T e T Te W an 1o
@) =1 22 N LR p 25 10 1 T AT T R .
o8l =1 — — Y PP e A .
2040 6t 8 1ot 120 14t 0 Igt 181
1 2 17 62 1382
tan(z) =2+ -2’ + —r° + —u’ + ¥+ et g

- — C
3 in 315 2835 155925
r mmst be measured in radians.

. 2 N 1,).3 J.'A @ ) 'EG ,.c'? ,1.,.8 ,r.ﬁ TlU
+.L+-—2“i .*,L);'T-‘F 4‘Jr'|_§ '1’f6*l"|"——+§ﬁ a—f—ﬁT.‘.
. .’r}g :1‘-3 :54 :US :Cﬁ
Wl+z)=r—- S+ —-——4+—=—-=+. for-laz<l

2 3 4 5) 6
Ag the Taylor series consist of an infinite number of terms, therefore the exact
value can only be obtained when all the infinite terms have been calenlated.
However, the calculator cannot caleulate an infinite nmmber of terms with-
ot taking an infinite amount of time. Instead it will only calculate a certain
number of the ferms. The funciion associated with a truncated mimber of
terms is known as the partial serics of the Taylor series. For a function f(x)
that can be expressed by a Taylor series, the error we make by approximat-
mg f{a) by the n th partial series (the partial Taylor series of degree n) is
n--1}
{\ Jé)xrml where f1(z) is the (n + Nth fexivative of f(z) and £ is a

(n 4 13!

value between 0 and a. Therefore, the closer a is to O, the smaller the values
£ can take and the sinaller the error.
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As can be seen from the above two ligures, the first few partial Taylor
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sertes of ¢” are a very good approximagion for ¢°.

For the trigonometric functions, the input can be reduced to a value be-
tween 0 and 7, as explained above, where a few terins of the partial series is
sufficient to obtain a very accurate answer. So the ervor produced by u]sing
i
the nth Taylor sories on the interval [0, 5] is maximally i (E) ' A
(n+ 11 \2
quick calculation shows that for n = 19, the error is less than 107", The
1oth Taylor series can be used to produce results accurate to 14 dp. Simi-
latly, for ¢, the error is less than 107" for the interval [0, 1] when n = 16
and the crror for In(1-+2) is less than 107 for the interval [§, 1] when n = 45.

The calcuiator needs only to store the coefficients of all the terms. This
will ensure that the calculations can be done quickly.

The advantage of this method ig that the calculator can calculate the values
of the functicns for any input value and get an accurate value. The disadvan-
tages are that repeated calculations are needed in order to get the accuracy
recaaired and quite a lot of coeflicients must be stored which will take up a
fair bit of space. However, the calenlator is able to do such calculations very
quickly and this is why this method is very usefol.
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3.3 CORDIC

CORDIC stands for COordinate Rotation Digital Computer. The coucept is
to take a unit vector and rotate it towards the angle vequired. The following
explains how to obtain the sine and cosine of an angle. Slight modifications
of tlis method allow for the calevlation of other tunctions such as inverse
trigonometric, exponential and logarithmic functions.

An anti-clockwise rotation of a vector with coordinates (X,Y} by an angle
@, in radians, results in the new coordinates (X7, V)

X' = X cos{0) — Y sin(@) = cos(#) » (X — Y tan(8))
Y’ =Y cos{B) + X sin(f) = cos(@) = (Y + X tan(9))
On the other hand, a clockwise rotation results in the new coordinates
X' = X cos(f) + Ysin(#) = cos(f) « (X + ¥V tan(f))
Y =Y cos(f) — X sin(f) = cos{(f) x (¥ — X tan(0))

In particular, for angles of the form 0, = tan='(27%), where £ = 0, 1,2, ..., n,
we get

. . XFY«2*
X' = cos (tan 27" # { X F Vian (tas™ (275 = D205
(“’( o )) 4T l( ( f)) N
: . ) Y Xx2F
V' = cos (tan"l(Z“L')) * (Y + X tan (tan“l (2_}‘))) = _Troi_—iT
The Taylor series of tan™ (27%) is:
2——;’»)3 (Z—k)E\ (2—5‘.)?’ (2—}.1)9 (2—&1)11
bax ™ (277) Tt e =

For large values of %, 27* becomes very small and so its powers bhecome
small enough to be safely ignoved. Thercfore, for large values of k&, 0, =
tan~1(27%) = 2%, This allows the calculator to save memory needed from
storing all the values of #.

Starting from the zero angle, the unit vector is rotated towards the input
angle, call it «, through all the values of f;. The unit vector is rotated anti-
clockwise by #;, unless the previous rotation rotafed the unit vector pass the
input angle, in which case the unit vector is instead rotated clockwise by 0.

13



Xo=1Yy=0,00 = x

Ifop >0 X
X — Y, %2
Xpyy = 22 FE
14 2-%
Y}c—i—Xk*Z_k
Y"‘H:ﬁ
1422
gy = Gip — 9;‘,
Iy, <0
XR:+1/IC*2_k
Xl = —F7———
1+ 22k
Yi — X, % 2°F
Y = k h’i
112 2k

O = O + O

where «y, keeps track of whether to rotate clockwise or anti-clockwise.

By the definition of sine and cosine, X = cos(a) and Y = sin{cx). At large
values of k, the difference of (Xi, Y:) from (X, Y) is at most 274+ 50 the
same is true for the error we make in cos{a) and sin{@), so to achieve ac-
curacy till 14 dp, all we need to do is make sure that &£ is so large that
2—(k+1) « 107, i.e k = 46. The method above needs only about & steps to

reach the required accuracy.

This method cannot be used on a large value of ¢, since the sum of all the
angles of tan=!(27%) does not exceed 1.744, or slightly more than § = 1.571.
Therefore, this method only works on angles hetween 0 and 7, but as we
remarked early in this scction, that is not a problem, as the basic trigono-
mctric properties allow the reduction of any angle to one in this interval.

The Ti-84 Plus uses the CORDIC method with some differences, which
will be explained in more details in the appendix. The important thing to
note is that the modified method can be done more quickly than the original
method.

The appendix contains a comparison of how the various methods fare in
calculating the sine and cosine of %.
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Chapter 4

Solutions of the equations

Solving an equation f(x) = g{z} is to find the values of z that will give the
same values for f(x) and g(x). Geometrically, this is equivalent to finding
the intersection of the curves when the two functions are plotted on a graph.

When ¢{z) is 0, then the equailon becomes f(z) = 0. The values of z
where f(z) = 0 are known as the roots of the function f(z). When g(z) is
another function, one can subtract g(2) on both sides such that the equation
hecomes h{z) = f(z) — g{x) = 0. The solutions ol the equation are the roots
of h{x). Therefore, finding the solutions of an equation is the same as finding
the roots of the function f{x) — g{x).

The three methods described below do repeated iterations where they ap-
proximate the root closer and closer at each iteration.

15



4.1 Bisection Method

Assuming that the function f{z) is continuous, i.e. there are no sudden
breaks, then if there are two points ¢ and /3 such that f{«) is positive and
F(41) is negative or vice-versa {they have different signs), then there exists a
root between the interval of a and 5. A root can exist between two points
where the values of the function have the same sign. An example of this
would be f{x) = 2%, In such a situation, this method will not be able to find
the root.

To find the root, the calculator can take the midpoint of @ and 8, call it
v = “13 , and see whether f{-y) has the same sign as f{a) or f(5). If f(vy)
hag the same sign as f(o), then a root must be between f(8) and f{7).
Similarly, if f{+} has the same sign as f(7), then & root nmst be between
fler) and f{~v). Of course, if f{v) = 0, then the root has been found aund
the process can be stopped. Thus an wnterval for the root that is half the
original size can be found and we can repeat this step again and again until
the interval converges to the root of the function.

Figure 4.1: Graphical display of the bisection method

The calculator can implement this method by asking for the user to input a
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left bound and vight bound between which a root can be found. The calcu-
lator can then repeatediy half the interval umtil the left and right bound are
the same values at the accuracy of the calculator. With an accuracy of 14
sf, about 50 iterations arc sufficient to converge on the root.

The advantage of this method is that it will definitely find a root of the
function if there exists a sign change to the left and the right of the root.
This method is fast although compared to the other inethods, it is the slow-
e8t,.

17



4.2 Newton-Rhapson

o st
| fangent ling

Figure 4.2: Graphical display of the Newton-Rhapson method

Given a function f(x), at the point zg, near the actual root, a better
approximation of the root might be obtained by taking the point where the
tangent of the curve at zq cuts the x-axis, at ;. Then z; takes the role of
xp and we repeat this procedure again and again and the points should get
closer and closer to the root.

18



The gradient of the tangent line is given by Jf_ﬁ_g)“__m_ The gradient is
Enp — I
also given by the derivative of the function which is f'(zg).
= j,!{zrﬂ) — M
Ty — Ty
R ()
S i)
e )
F'{zo)
Therefore, the generation of the points would follow the recursive formula:
f fIJ.r.
et = g — L00)
J'lan)

The first approximation can be obtained by asking the user to input a value
close to the actual oot or have the caleulator run through values of x. The
caleulator can then repeatedly iterate until the answer reaches the accuracy
required, meaning that the difference between x,,.1 and %, 15 less than 10—18
or 80.

This method finds the root very quickly if the first approximation is near the
root and the gradient is not near zero. I the gradient is zero, the method
will fail. If the gradient is near zero, the next point obtained will deviate
targely from the actual root. If the user does not choose the first approxima-
tion propetly, the values of z,, might not be able to reach the root or end up
finding a root other than the root that the user wanted.

As a result of the disadvantages, this method is not used in the Ti-84 Plus.
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4.3 Secant method

fix}

Figure 4.3: Graphical display of the Secant method

Given a function f(x), at two points xp and z;, ove to the left and one
to the right of the actnal root, a better approximation of the root might be
obtained by taking the point where the line that passcs through (2o, f(z0))
and (xy, f{2,)), known as the secant line, cuts the x-axis, at za. Sub zq into
#o and x, into zy and repeat. Thus, the points get closer and closer to the
actual root.



The equation of the secant line is

y—y=mx(x— 1)

At (;'}!32?(}): .
Haa) = Heo)
£y — Iy
f(_fr]) . (1:1 _ :EO)
flx) — flao)
GV AR At B
-2 Flaq) — flzo) T
oy Flm) + g% Fm) ¢ (1) =m0 % f00)
flz1) — flao)
o B0 * flay) — zy * flag)
: Flar) = flao)

Therefore, the generation of the peints would follow the recursive formula:

0— floy) =

* {9 — Ty)

Ty — Ly =

Lo =

Tp-1 % f(i'ﬂ) — L ¥ f(\mn—l)

f(:Eﬂ.) - j‘{:{:'ﬂ.—vl)

Lypp =

The advantage of this method is that it is faster than the biscetion method
to converge towards the root if it does converge. However, like the Newton-
Raphson method, it suffers from some of the same problems. If the first two
approximations are not near the root, the method might not find the root
the user is looking for. The secant line might cut the x-axis at a point far
away fron: the two points used, especially if the gradiens is close to zero and
the first two points chosen bave function values of the same sign.

As a tesult of the disadvantages, this method is also not used in the Ti-
84 Plus. '

- The Tic84 Plus uses a combination of the bisection method and the se-
i -cant method, as will be further detailed in the appendix. The appendix also
contains a comparison of how the various metbods fare in calculating the

. solation of sin(z) = \j}
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Chapter 5

Numerical integration

Integrating a function hetween the points o and /4, also known as the definite
integration, is the calculating of the area of the function between « and 3,
bounded by the z-axis aud the curve. Along with the function itself, the
values of & and § are given by the user. Integration is another example of
a case where there is no analytical answer for some functions. For example,
there is no exact answer for [ e*"dy. Numerical integration can give the
answer of this integration to any munber of decimal places as reguired or as
limited by the caleulator.

All the methods take two approximations of the area of the curve. One
is the area through the interval vequired. The other is thie sum of the areas
of two halves ot the intervel. If the difference in the area is larger than the
accuracy required, the interval will be halved and the approximation done
over each interval. The rcason for reducing the intervals is that the approxi-
madtion is closer to the actual result for smaller intervals. The intervals will
be referred to as [« = xg, 1, %9, T3, ..., Ty = [}, the length of each interval
as h =1, — o).

N
(3]



5.1 Trapezoid rule

We can approximate a curve by a straight line cutting the left and right ends
of an interval. The area under this straight line is the area of a trapezium,
hence the name of the method. The area would be

ool S ), flm) S )41l Sl )

2 2 t 2 2

= 2w (Flmo) + 2 (20) ) o (i) o)

This method will give an exact answer if the function is linear between
intervals. This method would thus give an exact answer on & linear function.
Like the previous method, this method is not very accurate for most func-

tions unless there is a high enough number of intervals. Since there are other
better methods, this method is not used.

The diagram below shows how the method looks graphically.

L5 7

Figure 5.1: Trapezoidal method on the function f(z) = z° with 4 intervals
between [0,2]
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5.2 Simpson’s rule

Instead of approximating each interval by a straight line, if the interval is
approximased by a quadratic polynomial, then the approximation will be
inore accurate. The ares over the whole interval would be

-g(f(;rg) + fla,) + 4(f(:z:1j + fleg) + ...+ f(x.n_l))

+2(f(3:2) + flzy) + ...+ f(:z:n__.z)))
As the above formula shows, n must be an even number. Therefore, the
number of intervals st be even for this method to work. This method
will give an exact answer if the function is quadratic between intervals. This
method would thus give an exact answer on a quadratic function.

The Simpson’s rule Is an easy method to use and gives remarkably accu-
rate results after subdividing the interval for a few times. Some calculators
use this method. There is another wethod that takes less time to give a more
accurate result and this other method is used in the Ti-84 Plus instead of
the Sitapson’s rule.



5.3 Gauss-Kronrod guadrature

This is the method that the Ti-84 Plus use to calculate integration. Unlike
the previous methods, the Gauss-Kronrod method does not take the values
of the function at equally spaced intervals, Instead, it takes the weighted
sum of the function caleulated at certain points. Weighing a value means
to multiply the valne by another number to take into account diflerence m
significance.

The larger the mumber of points that the method takes into account, the
more accurate the result. Taking n points can give exact results of the inte-

gration of a polynomial of 2 — 1 degyee.

The imterval for the integration is normally given as [-1,11.

i
[_ 1 Fl@)dae == oy flay) 4 wof{es) + wa f(2) + wafza) + .. Fwafla)

As an example, a three point Gauss-Kronrod rule would use the point x = ()
. . . 3 g . 5
with weight % and the points « = ﬂ:\/ ;f with weight 5.

However, since most integrations do not take the interval of [-1,1), there
needs to he a way to cbange the interval from [-1,1] to ja, 5].

The forpmula is

B 3 —o L 3 — ¥
Foe 1

a 2 - 2 2
o N (ba o+ 3
~ '—'—?'d— * e u,-g'f - ? XL + 2
= ux {wpf (uzg + v} + un f (uxy +v) + ..+ wn f (uz, +v})
5~ v+ /3
where u = .’.-,..-_E and v = U_.E:__._
2 2

Fach time that the interval is reduced, there is a need to recalculate the
values of every single point, unlike the previous methods. This would slow
down the process very much. However, research was done by Alexander
Kronrod to use points such that most of the points before division of the
intervals coincide with the points after the division. This aliows the points
to be reused so there is no need to repeatedly calculate many different points.

]
fuby |



The Ti-84 Plus calculator esscntially uses this method to calculate the
numerical integration of any function. It uses a pair of Gauss-Kronrod rules
of different munber of points, the larger one is the one that will provide the
answer, and the staller one is used as an approximation of the error.
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Chapter 6

Conclusion

The first operation, calewlating the values of trigonometrie, exponential and
logarithmic functions, showed two calculation methods. That is the Taylor
series and the CORDIC method. Both of them are feasible methods. Both
methods are used in calculators as they can calculate the values quickly.

The second operation, finding the roots of equations, showed three meth-
ods. That is the Bisection method, the Newton-Rhapson method and the
Secant method. The weakuess of all these three methods is that it fails when
there are repeated roots. In the case of roots of odd multiplicity, the bisection
method will definitely obtain the answer, and the other two methods will also
obtain the answer given reasonably close enough initial estimates. Consider-
ing that the bisection method will obtain the answer and is still fast enough,
it is understandable why the Ti-84 Plus uses the bisection method and se-
cant method over the faster but less trustable Newton-Rhapson method.

The third operation, finding the integration of a tunction, showed three meth-
ods. That is the Trapezoid rule, the Simpson’s rule and the Gauss-Kronrod
guadrature. The first two methods are methods that can be easily done on
a standard scientific calculator. The Simpson’s rule is a method that will
approximately obtain the actual answer with a few calculations. The Gauss-
Kronrod quadrature, on the other hand, is not an easy method to apply on
a calculator. Given its faster speed, if it can be programmed onto the calcu-
lator or come prepr oglammed, such as that on the Ti-84 Plus, then it is a
better method for doing numerical integration.

The essay has shown that the methods used in the Ti-84 Plus are accu-
rate although they might not be the fastest method or work all the time.
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It is hoped that from this essay, people will have gained an understanding in
how the calculator is capable of doing its operations.
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Appendix A

The modified CORDIC method
used in the Ti-84 Plus

The method used by the Ti-84 Plus will be called the modified method. The
original method uses angles 8, = tan~!(27%), while the modified mcthod uses
angles tan~1(107*). In the original method, the rotation can be either in the
clockwise or anti-clockwise direction for each &, but in the modified method,
we rotate in the anti-clockwise direction up to 10 times for cach k.

The original CORDIC method relied on the fact that computers operate
in binary mode. In the binary system that the CORDIC method was cre-
ated for, each iteration only requires max two angle updates digit shifts and
two (X, Y} updates, this makes the methad very speedy. On the Ti-84 Plus,
which uses the decimal system, the angles have to be changed such that the
calculator is still able to maintain high speeds, therefore the angles have to
be of the form tan~1(107F) instead.

As a result of using smaller angles, tan™'(107%) over tan—1(27%), it is im-

possible to achieve some angles. The sum of every angle is only .896 at most,
T . .

not even 60% of —. To achieve all possible angles, some angles must be re-

peated. In fact, the choice of whether to rotate by an angle makes it superior
to the original method. In the original wethod, rotating by #; when the
difference between the desired angle and the cumulative angle is small would
cause the resultant difference to be so large that the next few smaller angles
have to be used to reduce the difference. The modified method overcomes
this problem by only allowing the vector to be rotated in one direction, skip-
ping angles if they are larger than the difference.
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Ta addition, the modified method skips the need for division by /1 + 2%
at each step. Without the division, (X, ¥s) will uot be the coordinates of
the unit vector but rather the coordinate of a vector that is 14+ 2% as large
as the length of the vector defined by {Xj;_1,¥,_;}. By the time the method
ends, the final vector will not be a unit vector. Howoever, since the magnitude
is the same in both the X and Y coordinates, one can take Y divided by X

to get the value of tan{a). sin{a) and cos(a) can then be calculated by using

tan(a]; i

the formula sin{a) = By v aud cos{a) = T By calculating
tan(ey) first, this step cleverly reduces inaccuracies that occur with the re-
peated division of /1 + 2-2% at each step of the method, with the additional

henefit of less time wasted per step.
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Appendix B

Comparison of the methods for
trigonometric, exponential and
logarithmic functions

Let us take a look at how the three methods described above compare to find
the sine and cosine of § as compared to an analytical answer.

S [

= sin(%) — 0.382, 683, 432, 365,090 . .

_\“wb% r:\/ﬁ 2}

= cos(g) = (.923,879,532,511,287 ...

l\.a|4=-|—'\

T
511'1(8 = sin(

cos(—] = cos{

L\;l.c-m

g/

Linear interpolation using the Trigonometry Table
sin(g-) = sin(22.5%) = sin(22°) + 0.5 * (sin(23°) — sin(22°))

sin(

) = 0.3746 + 0.5 % (0.3907 — 0.3746) = 0.382,65

col =

(:os(’g) = c0s{22.5%} = cos(227) + 0.5 * {cos(23%) — cos(22°))
(0&(8) = 0.9272 + 0.5 * (0.9205 — 0.9272) = 0.923,85

The calculated answers are aceurate to 4 significant figures, which is only as
accurate as the accuracy ol the values given in the table.



0,305 /
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Figure B.1: Graphical display of interpolation of gin{22.5°)
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Figure B.2: Graphical display of interpolation of cos{22.5%)
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Taylor expansion for sine

T
= 0.392,699,081,698,724
) .’53 _ nw 'IT3
T T8 843l
= 0.382,605,802,675,189
a3 N 20 o7 7 75
TR TR T % 8«3l b
= ().382,683,717,505,508
@ 2t o 7 N 7° a7
BT { T 8 83 Bl B kT
— 0.382,683,431,753,912
3 .5 T .9
- % - -'%- + %g‘ —  (.382,683,432,365,047
hoc: S T8 n
-t g = (.382,683,432,365,089
RGOS x}i 213
x— 31 + B “+ PR + 31 = (.382,683,432,365,080
Taylor expansion for cosine
1 = 1
. z? B o
2 T gl
= {.992,8093,715,616,489
2 4 2 ol
1____]_.._... — 1 — ———— s
2! 4! 82 %20 8 dl
= {1.923,884,612,131,728
o2 2t 7 ar 0
L2 T
2t 4 f! 82421 Rixd4l 866!
= {.923,879,518 508,485
22 2t b P
1+ — = =+ = (.923,879,632,535,203
5 Ty T gl T w
22 S L0
R M TN ~ 0.923,879,532,511,250
or T4l 6l 8l 1q]
2t 2t 2 20 P
11— _QT =+ E — 6_' —+ 8' - iﬁ + 12_? = 0.92338793532,511,287

As the above examples show, using the Taylor series fo calculate trigono-
metric functions (as well as the other functions) allows onc to gain accurate
answers very guickly.
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CORDIC for both cosine and sine

e

[ SR R B

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
28
30
31
32
33
34
35

Cumulative angle

0
0.785398163397
(1.321750554397
(.566729217524
.442374222977
0.379955412981
0.411195246411
0.395571517791
0.387759176730
$.391665406862
0.393618529379
0.392641567159
0.393130248401
0.392886107780
0.392764037469
0.392703002512
(0.392672484734
(1.392687743523
0.382695372918
0.392699187615
(.392697280266
0.392608233041
1.392698710773
0.392698949197
0.392699068406
(.392659128010
(.392699098208
1.392699083307
0.392699075856
0.392699079582
(1.392699081444
(1.392699082376
0.392699081910
0.392699081677
(0.392695081794
(0.392699081735

X
1
0.707106781187
0.948683293051
0.843661487732
0.903737838894
0.928681172892
0.916643731456
(.922776483909
0.9257586 72075
(0.924274609100
0.923527284650
0.923901387781
0.923714446286
0.923807944571
(.923854673065
(0.923878032150
0.923889710402
0.9243883871384
0.923880951794
(0.923879491979
(1.923880221888
(1.923879856934
0.923879674456
.923879583218
0.92387953 7598
0.923879514789
0.923875526193
$.92387G531896
(.923879534747
0.923879533321
(0.923879032600
0.923879532252
0.923879532430
0.923879532520
(.923879532475
(.923879532497

‘lf
{
0.707106781187
(1316227766017
{.536875492193
.428086344739
0.370879062656
0.399705228366
0.385335634891
0.378114904597
0.381728237065
0.3835327293381
{0.3826306064815
(0.383081742872
{1.382856215H240
(.382743442864
0.382687054537
(1.382658859834
0.382672957232
{1.3826800053896
{3.382683530219
0.382681765058
0.382682649139
(0.382683089679
0.332683509949
0.382683420084
0.382683475152
().382683447618
0.382683433851
.382683426967
{1.382683430409
0.382683432130
0.382683432990
0.3826834320560
(1.382683432345
1.382683432453
(0.382683432399

Rotate
Clockwise
Anticlockwise
Clockwise
Anticlockwise
Anticlockwise
Clockwize
Anticlockwize
Anticlockwise
Clockwise
Clockwise
Anticlockwise
Clockwige
Anticlockwise
Anticlockwise
Anticlockwise
Anticlockwise
Clockwise
Clockwise
Clockwise
Anticlockwise
Clockwise
Clockwise
Clockwise
Clockwise
Clockwise
Anticlockwise
Anticlockwise
Anticlockwise
Clockwise
Clockwise
Clockwise
Anticlockwise
Anticlockwise
Clockwise
Antliclockwise
Anticlockwise



43
44

{1.392699081 766
0.352699081692
{1.392699081694
00.392699081695
{1.392699081687
(1.39269908169%
.392699031699
0.392699081699
(0392699081699

0.923879532508
(0.923879532514
0.923879532511
(.923879532513
0.923879532512
(1.923879532512
(.923879532511
(0.923879032511
(.923879532511

(0.382683432372
().383268343230%
0.382683432365
0.382683432362
(3.382683432364
{.382683432364
0.382683432365
{).382683432365
{1.382683432365

Anticlockwisc
Clockwise
Anticlockwise
Clockwise
Clockwise
Clockwise
Clockwise
Anticlockwise
Clockwise

Even though it takes more steps for the CORDIC method to obtain the
same answer as compared to the Taylor series, it actually takes less time
for each step since multiplication of powers of 10 just involve shifting the
pumbers to the ieft/right. The difference is not noticeable with just one cal-
culation, but when grapbing trigonometric equations, the CORDIC method
would be faster. In addition, the values of the values of g, take up less space
than to store the values of the coefficients of the Taylor series, as mentioned
carlier.

Figure B.3: Graphical display of the first five iterations of the CORDIC
method



Appendix C

Method used in the Ti-84 Plus
for the solutions of the
equations

The Ti-84 Plus uses a modification of the secant method also known as the
false position method together with the biscction method to find a root of
the cquation. An interval of a root can be obtained either by input from the
uger or from allowing the calculator to scarch for values of x with a difference
in sign. Irom the two points, the secant method is used to obtain a third
x-value. Tike the biscction method, the next two points are chosen from
the three points such that they form an interval between which a root can
he found. The bisection method is also used on the original two points to
obtain anotlier x-value. The calculator will choose the smaller interval of the
two methods. This process is repeated again and again until the difference
between the left and right bound is smaller than the accuracy required.

This method has both the advantages of the two methods involved. Firstly,
it will definitely find a root if there exists a sign change to the left and the
right of the root. Secondly, it is slightly faster since it uses the secant method
which is faster than the bisection method.

Unfortunately, this method would fail against the simplest of solutions such
as 7 = 0. The only way to solve the situation would be to draw the graph
of the equation, and then conlinually zoom in at the root till the accuracy
required. This would actually be the bisection method done manually.
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Appendix D

Comparison of the methods for
the solutions of the equations

Lot us take a look at how the methods described above compare to find the

solutions of sin{x) = %, [0,3].
1 T
:>.1L' :Sin_](ﬁ) = %

= x = 0.785, 398, 163, 397, 448, 309, 62

Bisection method

1
Let f{x)y=sinfz) - — =10
et fla) =sin(z) 7
Try values of 2 to find sign change.
£(0) = sin(0) — - <0
=sin(0)) — —=
. 1
f(1) = sin(1) - % >0

A sign change exists between @ = 0 and x = 1 =4 root lics between 0 and
1. =01}

1.£(0.5) = sin(0.5) — —= = —0.227, 681,212,582, 344, 524,13 = (0.5, 1]

7

1 .
2./{0.75) = sin{0.75) — 73 = —(.025, 468,021, 163,213,357, 67 = [0.75, 1]
. . 1 .
3.f(0.875) = 8111(0.875)—ﬁ = (.060,436, 721,049, 479, 515, 23 = [0.75,0.875]
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4.f({}.8].25) = 0.018, 901,874,074, 165, 025,26 = [0.75,0.8125]
5.f(0.78125) = —0.002, 939, 269, 732,013, 851,62 = [0.78125,0.8125)
6 F(0.796875) = 0.008, 068, 602, (77,460, 107, 86 = [0.78125, 0.796875)
7.f{0.7890625) = 0. {}(}2}586 324,177, 352, ?00 56 = [0.78125,0.7890625)
8.'}"(0.?8515620} —0.000, 171,079, 292,811 027,53 = [0.78515625, 0.7890625]
Although this method will converge, but it converges slowly. The number of
accurate figures increase hy one every three steps on average. One thing to
notice is that the values do not necessarily get more accurate at each step
(look at the fifth and sixth step).

Newton method

'{x) = cos(z)

e f (:z:.n)
O R R
+ R)
Lo = 0
oo sin(0) — -
£ = o Hao) o BTV g 707,106, 781, 186, 547, 524, 40
f{zo) cos(0)
Ty = &y — f(;l)) = (.782, 700, 665, 480, 562, 314, 18
L
£y = Tp — %‘t(f’-% = 0,785,394, 541, 456, 322, 162, 24
L fl)
Ty = iy — 2 = (1.785,308,163,390, 889, 120,45
I(z3)
R ACV .
78 = g e = (1.785,398,163,307,448,309,62
T4
o flos)
7= 5 = Fy = — (.785,398,163,397,448,309,62

As can be seen from tins example, the number of accurate figures roughly
double at every iteration. If this metbod corerges at all, it converges rapidly.
However, let us try the starting value of 1.5:°

3;'-0‘——_-1.

o =m0 — 1) 605 169, 536,980, 504, 698, 59
Ty =Ty — —Ji%-‘”)j- —4.022, 402, 540, 074, 553, 274, 46
Ha
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flx2)
JH{z2)
As can be seen, the starting value of 1.5 causes the method to converge to
another root instead.

2y = @y - = —3.071, 624, 579, 720, 563, 099, 38

Secant method
T = 0
Iy = i
oy B0 s fm) — 2y % Flao)
flay) — flap)
zy & flag) — wo x flay)
flwe) — flo)
2y = 0.785, 611,659, 518, 236
xr = 0.785,398, 955,992,012
zg = 0.785,368,163,310, 820
xy = .785,398,163,397,448

= (1.840, 322, 238, 024,614

Tg = = 0.777,928,281,477,152

As can be seen from the example, the number of accurate figures roughly in-
crease by 3 ap each iteration. The rate of convergence for the secant method
ig slower than that of the Newton-Rhapson method but faster than the Bi-
section method.
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Appendix E

Comparison of the methods for
numerical integration

Let us take a laok at how all the methods deseribed above compare to find
the definite integration of f{x) = cos(x) between -1.5 and 1.5.

15
/ cos{x)dz = [sin(x)]} ; = sin(1.5} — sin(~1.5) = 2¢in(1.5)

J—1.5

1.4
;»f cos(x)dx = 1.994,989. 973, 208, 108, 861,88 . . .
-1.5

Trapezoid rule

Tt f Area

1 3 0,212,211, 605,003, 108, 730,26
2 1.5  1.606,105, 802,501, 554, 365,13
4 075 1.900,586,204,561,508,512,03
8 (0.375 1.971,556, 206, 313,989, 606, 79
16 0.1875 1.989, 141, 834K, 524, 599, 459, 14

Simpson’s rule
T h Arca,
2 1.5 2.070,737,201,667,702,910,09
A4 0.75  1.998,746, 338, 581,493, 227, 67
8  0.375 1.995 212,873,564, 816, 638, 38
16 0.1875 1.995 003,729,261, 169, 409, 33

As the above results show, using 16 intervals, the Simpson's rule gives the
closest answer.



Three-point Gauss-Kronrod quadrature

3 5 8 [3 5
Ty = _'\/F}’wl == §$9{2 =0 Wy = 53,.83 = -\jg,it,g = 6

¥y =
For [-1.5,1.5]

3y 5 — (—1.5) a+f4 —15+15 B
”‘——"Q ------ = = — =] Jandwy= 5 = 5 “Q“‘O
3 {5 { 3/3\ 8./3 N 5. {33
—kl = f [ -=f= —f(— ‘O) - f /— = 2,162,669, 113, 320,307,130, 1
2*(9fk 2\/5)4—9“ 2>5 —}gj (2\5 , 32, 397, 19
n =2
For [-1.5,0]

g—ao 0-(-15) 15 a+fH 1540 15

= _ — —“:r‘”[“ ] 1 == - . = = (.75

4 5 5 5 175 and 1 5 5 5 175
- g {/ g !E ; "'r\ 3 £ e 4 D ’ ,'[53‘ ""‘\\
0 (o*(saj \—(].{ )\!/ £ 0757 + 3 (0.75 %0 - 0.75) + t)f (f} %Vf —0.(-:))}

3,
For [6,1.5],

G- 1h-0 15 o+ 0+15 135 -
U= = 5 -ﬁ7~{355m‘:d? D) ——2———0.70

8 5. 3
} ZFO.75x 0070+ = f L0754/ 2 4+ 0.75
J 5/ 57 5
1.

995,002, 164,031,452, 427,06

With only two intervals, the Gauss-Jronrod quadrature found the answer to
almost Lhe same accuracy as that of the Simpson’s rule with sixteen intervals.

= Arvea =
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